当前位置:考满分吧中小学教学初中学习网初一学习辅导初一数学辅导资料初一数学试卷中考数学 直角三角形与勾股定理真题整理A» 正文

中考数学 直角三角形与勾股定理真题整理A

[10-20 00:29:14]   来源:http://www.kmf8.com  初一数学试卷   阅读:8209
概要: 11.(2012南州)如图1,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )A、(2,0) B、( ) C、( ) D、( )解析:在 中, ,所以 ,所以 ,故 .答案:C.点评:本题考查矩形、勾股定理、圆弧及数轴知识,是一道综合性的题目,比较简单,难度较小.12.(2012临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.考点:直角三角形的性质,全等三角形的判定与性质。解答:解:∵∠ACB=90°,∴∠ECF+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠ECF=∠B,在△ABC和△FEC中, ,∴△ABC≌△FEC(ASA),∴AC=EF,∵AE=A
中考数学 直角三角形与勾股定理真题整理A,标签:初一数学试卷分析,http://www.kmf8.com

11.(2012南州)如图1,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )

A、(2,0) B、( ) C、( ) D、( )

解析:在 中, ,所以 ,所以 ,故 .

答案:C.

点评:本题考查矩形、勾股定理、圆弧及数轴知识,是一道综合性的题目,比较简单,难度较小.

12.(2012临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.

考点:直角三角形的性质,全等三角形的判定与性质。

解答:解:∵∠ACB=90°,

∴∠ECF+∠BCD=90°,

∵CD⊥AB,

∴∠BCD+∠B=90°,

∴∠ECF=∠B,

在△ABC和△FEC中, ,

∴△ABC≌△FEC(ASA),

∴AC=EF,

∵AE=AC﹣CE,BC=2cm,EF=5cm,

∴AE=5﹣2=3cm.

故答案为:3.

13.(2012陕西)如图,从点 发出的一束光,经 轴反射,过点 ,则这束光从点 到点 所经过路径的长为 .

【解析】设这一束光与 轴交与点 ,作点 关于 轴的对称点 ,过 作 轴

于点 .由反射的性质,知 这三点在同一条直线上.再由轴对称的性质知 .则 .

由题意得 , ,由勾股定理,得 .所以 .

【答案】

【点评】本题从物理学角度综合考查了平面直角坐标系中点的坐标应用、

轴对称性质以及勾股定理等.难度中等

14.(2012•资阳)直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 10或8 .

考点: 三角形的外接圆与外心;勾股定理。

专题: 探究型。

分析: 直角三角形的外接圆圆心是斜边的中点,那么半径为斜边的一半,分两种情况:①16为斜边长;②16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.

解答: 解:由勾股定理可知:

①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;

②当两条直角边长分别为16和12,则直角三角形的斜边长= =20,

因此这个三角形的外接圆半径为10.

综上所述:这个三角形的外接圆半径等于8或10.

故答案为:10或8.

点评: 本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.

15.(2012无锡) 如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于 3 cm.

考点:直角三角形斜边上的中线;等腰三角形的判定与性质;平移的性质。

分析:利用直角三角形斜边上的中线等于斜边的一半知AD=BD=CD=AB=4cm;然后由平移的性质推知GH∥CD;最后根据平行线截线段成比例列出比例式,即可求得GH的长度.

解答:解:∵△ABC中,∠ACB=90°,AB=8cm,D是AB的中点,

∴AD=BD=CD=AB=4cm;

又∵△EFG由△BCD沿BA方向平移1cm得到的,

∴GH∥CD,GD=1cm,

∴ = ,即 = ,

解得,GH=3cm;

故答案是:3.

点评:本题考查了直角三角形斜边上的中线、平移的性质.运用“直角三角形斜边上的中线等于斜边的一半”求得相关线段的长度是解答此题的关键.

16.(2012黔西南州)如图6,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为______________.

【解析】由于∠ACB=90°,DE⊥BC,所以AC∥DE.又CE∥AD,所以四边形ACED是平行四边形,所以DE=AC=2.

在Rt△CDE中,由勾股定理CD=CD2―DE2=23.又因为D是BC的中点,所以 BC=2CD=43.

在Rt△ABC中,由勾股定理AB=AC2+BC2=213.

因为D是BC的中点,DE⊥BC,所以EB=EC=4,所以四边形ACEB的周长=AC+CE+BE+BA=10+213.

【答案】10+213.

【点评】本题是一个几何的综合计算题,尽管难度不大,但综合考查了平行四边形、垂直平分线的性质和判定,理清思路,找准图形中的相等线段,并不难解决.

三.解答题

17.(2012菏泽)如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:

(1)试证明三角形△ABC为直角三角形;

(2)判断△ABC和△DEF是否相似,并说明理由;

(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:用尺规作图,保留痕迹,不写作法与证明).

考点:作图—相似变换;勾股定理的逆定理;相似三角形的判定。

解答:解:(1)根据勾股定理,得AB=2 ,AC= ,BC=5;

显然有AB2+AC2=BC2,

根据勾股定理的逆定理得△ABC 为直角三角形;

(2)△ABC和△DEF相似.

根据勾股定理,得AB=2 ,AC= ,BC=5,

DE=4 ,DF=2 ,EF=2 .

= = = ,

∴△ABC∽△DEF.

(3)如图:连接P2P5,P2P4,P4P5,

∵P2P5= ,P2P4= ,P4P5=2 ,

AB=2 ,AC= ,BC=5,

∴ = = = ,

∴,△ABC∽△P2P4 P5.

上一页  [1] [2] 


Tag:初一数学试卷初一数学试卷分析初中学习网 - 初一学习辅导 - 初一数学辅导资料 - 初一数学试卷
上一篇:中考数学直角三角形与勾股定理真题整理汇集B