∴∠SFR=180°﹣∠1﹣∠2=90°,即△SFR是直角三角形.
点评:该题考查了二次函数的性质及解析式的确定、矩形的性质、特殊三角形的判定等知识,综合性较强.在答案题目时,要注意数形结合,并灵活应用前面小题中证得的结论
27. (2012贵州省毕节市,27,16分)如图,直线 1经过点A(-1,0),直线 2经过点B(3,0), 1、 2均为与 轴交于点C(0, ),抛物线 经过A、B、C三点.
(1)求抛物线的函数表达式;
(2)抛物线的对称轴依次与 轴交于点D、与 2交于点E、与抛物线交于点F、与 1交于点G。求证:DE=EF=F G;
(3)若 1⊥ 2于 轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由。
解析:(1)已知A、B、C三点坐标,利用待定系数法求出
抛物线的解析式;
(2)D、E、F、G四点均在对称轴x=1上,只要分别求出
其坐标,就可以得到线段DE、EF、FG的长度.D是对称
轴与x轴交点,F是抛物线顶点,其坐标易求;E是对称轴
与直线l2交点,需要求出l2的解析式,G是对称轴与l1的交
点,需要求出l1的解析式,而A、B、C三点坐标已知,所
以l1、l2的解析式可以用待定系数法求出.至此本问解决;
(3)△PCG为等腰三角形,需要分三种情况讨论.如解答图所示,在解答过程中,充分注意到△ECG为含30度角的直角三角形,△P1CG为等边三角形,分别利用其几何性质,则本问不难解决.
解答:解(1)依题意,得.
, 解得
∴抛物线的函数表达式是y= x2- x- ;
(2)∵直线l1经过点A(-1,0),C(0,- ),∴直线l1的函数表达式为y1=- x- .
∵直线l2经过点B(3,0),C(0- ),∴直线l2的函数表达式为y2= x- .
又∵抛物线的对称轴是x=1,∴点D的坐标为(1,0),点E的坐标为(1,- ),
点F的坐标为(1,- ),点G的坐标为(1,-2 ).∴DE=EF=FG= ;
(3)P点的坐标为:P1(2,- ),P2(1, ).
理由:分三种情况:
①以G点为圆心,GC长为半径作弧,交抛物线于点C和点P1,连结CP1、GP1,所以GC=GP1.由等腰三角形的三线合一性质(或抛物线的对称性)可知点P1与点C关于直线x=1对称,所以点P1的坐标为(2,- );
②以点C为圆心,CG长为半径作弧,因为∠CGF=30°,所以∠CGP1=60°,即△CGP1是等边三角形,又因为AC=CG=2,所以作出的弧与抛物线交于点A和点P1,但A、C、G在同一条直线上,不能组成三角形.
③作线段CG的垂直平分线,因为△CGP1是等边三角形,所以P1点在线段CG的垂直平分线上;连接CF,由于l1⊥l2于点C,F是EG的中点,所以FC=FG,即F点也在线段CG的垂直平分线上,所以P2点与F点重合,即P2点的坐标是(1,- ).综上所述,点P的坐标是P1(2,- ),P2(1,- ).
点评:作为中考压轴题,本题考查的知识点比较多,包括二次函数的图象与性质、待定系数法求函数(二次函数、一次函数)解析式、等腰三角形、等边三角形以及勾股定理等.难点在于第(3)问,需要针对等腰三角形△PCG的三种可能情况分别进行讨论,在解题过程中,需要充分挖掘并利用题意隐含的条件(例如直角三角形、等边三角形),这样可以简化解答过程.
29.(2012江苏苏州,29,12分)如图,已知抛物线y= x2﹣ (b+1)x+ (b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为 (b,0) ,点C的坐标为 (0, ) (用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.
分析: (1)令y=0,即y= x2﹣ (b+1)x+ =0,解关于x的一元二次方程即可求出A,B横坐标,令x=0,求出y的值即C的纵坐标;
(2)存在,先假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP,过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,利用已知条件证明△PEC≌△PDB,进而求出x和y的值,从而求出P的坐标;
(3)存在,假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似,有条件可知:要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴;
要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°;再分别讨论求出满足题意Q的坐标即可.
解答: 解:(1)令y=0,即y= x2﹣ (b+1)x+ =0,
解得:x=1或b,
∵b是实数且b>2,点A位于点B的左侧,
∴点B的坐标为(b,0),
令x=0,
解得:y= ,
∴点C的坐标为(0, ),
故答案为:(b,0),(0, );
(2)存在,
假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.
设点P的坐标为(x,y),连接OP.
则S四边形POCB=S△PCO+S△POB= • •x+ •b•y=2b,
∴x+4y=16.
过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,
∴∠PEO=∠EOD=∠ODP=90°.
∴四边形PEOD是矩形.
∴∠EPO=90°.
∴∠EPC=∠DPB.
∴△PEC≌△PDB,∴PE=PD,即x=y.
由 解得
由△PEC≌△PDB得EC=DB,即 ﹣ =b﹣ ,
解得b= >2符合题意.
∴P的坐标为( , );
(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
∵∠QAB=∠AOQ+∠AQO,
∴∠QAB>∠AOQ,∠QAB>∠AQO.
∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.
∵b>2,
∴AB>OA,
∴∠Q0A>∠ABQ.
上一页 [1] [2] [3] [4] [5] [6] [7] [8] 下一页
- 初一下册数学开放探索型问题
- › 2016年初一下册政治教学计划
- › 初一下册语文教学计划
- › 2016年初一下册英语期中试题(带答案及听力mp3)
- › 2016年初一下册数学月考模拟试题
- › 初一下册语文高频考点测试卷
- › 初一下册生物知识点总结
- › 2016年初一下册生物月考试题
- › 2016年初一下册第一次月考历史试题
- › 初一下册历史月考模拟试卷
- › 2016年人教版初一下册数学期末试卷
- › 2016年人教版初一下册数学期末试题
- › 2016年人教版初一下册数学期末试卷答案
- 在百度中搜索相关文章:初一下册数学开放探索型问题
- 在谷歌中搜索相关文章:初一下册数学开放探索型问题
- 在soso中搜索相关文章:初一下册数学开放探索型问题
- 在搜狗中搜索相关文章:初一下册数学开放探索型问题