当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2017年中考数学图形的变换专题试题解析» 正文

2017年中考数学图形的变换专题试题解析

[05-18 21:30:48]   来源:http://www.kmf8.com  初三数学试卷   阅读:8883
概要: (2)证明:由题意得:△ABC≌△AED。∴AB=AE,∠ABC=∠E。在△AFB和△AGE中,∵∠ABC=∠E,AB=AE,∠α=∠α,∴△AFB≌△AGE(ASA)。【考点】翻折变换(折叠问题),旋转的性质,全等三角形的判定。【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系。(2)由题意易得△ABC≌△AED,即可得AB=AE,∠ABC=∠E,然后利用ASA的判定方法,即可证得△AFB≌△AGE。2. (2012湖北天门、仙桃、潜江、江汉油田10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB
2017年中考数学图形的变换专题试题解析,标签:初三数学试卷分析,http://www.kmf8.com

(2)证明:由题意得:△ABC≌△AED。

∴AB=AE,∠ABC=∠E。

在△AFB和△AGE中,∵∠ABC=∠E,AB=AE,∠α=∠α,

∴△AFB≌△AGE(ASA)。

【考点】翻折变换(折叠问题),旋转的性质,全等三角形的判定。

【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系。

(2)由题意易得△ABC≌△AED,即可得AB=AE,∠ABC=∠E,然后利用ASA的判定方法,即可证得△AFB≌△AGE。

2. (2012湖北天门、仙桃、潜江、江汉油田10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.

(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.

(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.

(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的 时,求线段EF的长.

【答案】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE。

(2)△BDF∽△CED∽△DEF,证明如下:

∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,

又∵∠EDF=∠B,∴∠BFD=∠CDE。

∵AB=AC,∴∠B=∠C。∴△BDF∽△CED。∴ 。

∵BD=CD,∴ ,即 。

又∵∠C=∠EDF,∴△CED∽△DEF。∴△BDF∽△CED∽△DEF。

(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.

∵AB=AC,D是BC的中点,∴AD⊥BC,BD= BC=6。

在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣62,

∴AD=8。

∴S△ABC= •BC•AD= ×12×8=48,

S△DEF= S△ABC= ×48=12。

又∵ •AD•BD= •AB•DH,∴ 。

∵△BDF∽△DEF,∴∠DFB=∠EFD。

∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF。

又∵DF=DF,∴△DHF≌△DGF(AAS)。∴DH=DG= 。

∵S△DEF= •EF•DG= •EF• =12,∴EF=5。

3. (2012湖北恩施8分)如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,

再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.

【答案】证明:设正方形ABCD的边长为2,E为BC的中点,∴BE=1。

∴ 。

又B′E=BE=1,∴AB′=AE﹣B′E= ﹣1。

又∵AB″=AB′,∴AB″= ﹣1。

∴ 。∴点B″是线段AB的黄金分割点。

【考点】翻折(折叠)问题,正方形的性质,勾股定理,折叠对称的性质,黄金分割。

【分析】设正方形ABCD的边长为2,根据勾股定理求出AE的长,再根据E为BC的中点和翻折不变性,求出AB″的长,二者相比即可得到黄金比。

4. (2012湖北襄阳12分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.

(1)求AD的长及抛物线的解析式;

(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?

(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

【答案】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10。

由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD。

由勾股定理易得EO=6。∴AE=10﹣6=4。

设AD=x,则BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3。

∴AD=3。

∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),

∴ ,解得 。∴抛物线的解析式为: 。

(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,

由(1)可得AD=3,AE=4,DE=5。而CQ=t,EP=2t,∴PC=10﹣2t。

当∠PQC=∠DAE=90°,△ADE∽△QPC,

∴ ,即 ,解得 。

当∠QPC=∠DAE=90°,△ADE∽△PQC,

∴ ,即 ,解得 。

∴当 或 时,以P、Q、C为顶点的三角形与△ADE相似。

(3)存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);

②M2(12,﹣32),N2(4,﹣26);③M3(4, ),N3(4,﹣ )。

【考点】二次函数综合题,折叠和动点问题,矩形的性质,全等三角形的判定和性质,勾股定理,曲线上点的坐标与方程的关系,相似三角形的判定和性质,平行四边形的判定和性质。

【分析】(1)根据折叠图形的轴对称性,△CED≌△CBD,在Rt△CEO中求出OE的长,从而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式。

(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值。

(3)假设存在符合条件的M、N点,分两种情况讨论:

①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点。

上一页  [1] [2] [3] [4]  下一页


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:2017年中考数学实数专题试题解析