当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷数量和位置变化中考数学试题分类解析» 正文

数量和位置变化中考数学试题分类解析

[10-20 00:48:49]   来源:http://www.kmf8.com  初三数学试卷   阅读:8779
概要: ∴SΔAOB= = 。∴SΔAOB的最小值为1,此时m=1,A(1,1)。∴直线OA的一次函数解析式为y=x。【考点】二次函数综合题,曲线上点的坐标与方程的关系,一元二次方程根与系数的关系,二次函数的性质,不等式的知识。【分析】(1)求抛物线的顶点坐标,即要先求出抛物线的解析式,即确定待定系数a、b的值.已知抛物线图象与y轴交点,可确定解析式中的常数项(由此得到a的值);然后从方程入手求b的值,题目给出了两根差的绝对值,将其进行适当变形(转化为两根和、两根积的形式),结合根与系数的关系即可求出b的值。(2)将 配成完全平方式,然后根据平方的非负性即可得证。(3)结合(1)的抛物线的解析式以及函数的平移规律,可得出抛物线C2的解析式;在Rt△OAB中,由勾股定理可确定m、n的关系式,然后用m列出△AOB的面积表达式,结合不等式的相关知识可确定△OAB的最小面积值以及此时m的值,从而由待定系数法确定一次函数OA的解析式。别解:由题意可求抛物线C2的解析式为:y=x2。∴A(m,m2),B(n
数量和位置变化中考数学试题分类解析,标签:初三数学试卷分析,http://www.kmf8.com

∴SΔAOB= = 。

∴SΔAOB的最小值为1,此时m=1,A(1,1)。

∴直线OA的一次函数解析式为y=x。

【考点】二次函数综合题,曲线上点的坐标与方程的关系,一元二次方程根与系数的关系,二次函数的性质,不等式的知识。

【分析】(1)求抛物线的顶点坐标,即要先求出抛物线的解析式,即确定待定系数a、b的值.已知抛物线图象与y轴交点,可确定解析式中的常数项(由此得到a的值);然后从方程入手求b的值,题目给出了两根差的绝对值,将其进行适当变形(转化为两根和、两根积的形式),结合根与系数的关系即可求出b的值。

(2)将 配成完全平方式,然后根据平方的非负性即可得证。

(3)结合(1)的抛物线的解析式以及函数的平移规律,可得出抛物线C2的解析式;在Rt△OAB中,由勾股定理可确定m、n的关系式,然后用m列出△AOB的面积表达式,结合不等式的相关知识可确定△OAB的最小面积值以及此时m的值,从而由待定系数法确定一次函数OA的解析式。

别解:由题意可求抛物线C2的解析式为:y=x2。

∴A(m,m2),B(n,n2)。

过点A、B作x轴的垂线,垂足分别为C、D,

由 得 ,即 。∴ 。

∴ 。

∴SΔAOB的最小值为1,此时m=1,A(1,1)。

∴直线OA的一次函数解析式为y=x。

4. (2012湖北荆门12分)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).

(1)求抛物线的解析式及顶点B的坐标;

(2)求证:CB是△ABE外接圆的切线;

(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;

(4)设△AOE沿x轴正方向平移t个单位长度(0

【答案】解:(1)∵抛物线经过点A(3,0),D(﹣1,0),∴设抛物线解析式为y=a(x﹣3)(x+1)。

将E(0,3)代入上式,解得:a=﹣1。

∴抛物线的解析式为y=-(x﹣3)(x+1),即y=﹣x2+2x+3。

又∵y=-x2+2x+3=-(x-1)2+4,∴点B(1,4)。

(2)证明:如图1,过点B作BM⊥y于点M,则M(0,4).

在Rt△AOE中,OA=OE=3,

∴∠1=∠2=45°, 。

在Rt△EMB中,EM=OM﹣OE=1=BM,

∴∠MEB=∠MBE=45°, 。

∴∠BEA=180°﹣∠1﹣∠MEB=90°。

∴AB是△ABE外接圆的直径。

在Rt△ABE中, ,∴∠BAE=∠CBE。

在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°。∴∠CBA=90°,即CB⊥AB。

∴CB是△ABE外接圆的切线。

(3)存在。点P的坐标为(0,0)或(9,0)或(0,﹣ )。

(4)设直线AB的解析式为y=kx+b.

将A(3,0),B(1,4)代入,得 ,解得 。

∴直线AB的解析式为y=﹣2x+6。

过点E作射线EF∥x轴交AB于点F,当y=3时,得x= ,∴F( ,3)。

情况一:如图2,当0

则ON=AD=t,过点H作LK⊥x轴于点K,交EF于点L.

由△AHD∽△FHM,得 ,即 ,解得HK=2t。

= ×3×3﹣ (3﹣t)2﹣ t•2t=﹣ t2+3t。

情况二:如图3,当

由△IQA∽△IPF,得 .即 ,

解得IQ=2(3﹣t)。

= ×(3﹣t)×2(3﹣t)﹣ (3﹣t)2= (3﹣t)2= t2﹣3t+ 。

综上所述: 。

【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数性质,等腰直角三角形的判定和性质,勾股定理,锐角三角函数定义,圆的切线的判定,相似三角形的性质,平移的性质。

【分析】(1)已知A、D、E三点的坐标,利用待定系数法可确定抛物线的解析式,从而能得到顶点B的坐标。

(2)过B作BM⊥y轴于M,由A、B、E三点坐标,可判断出△BME、△AOE都为等腰直角三角形,易证得∠BEA=90°,即△ABE是直角三角形,而AB是△ABE外接圆的直径,因此只需证明AB与CB垂直即可.BE、AE长易得,能求出tan∠BAE的值,结合tan∠CBE的值,可得到∠CBE=∠BAE,由此证得∠CBA=∠CBE+∠ABE=∠BAE+∠ABE=90°,从而得证。

(3)在Rt△ABE中,∠AEB=90°,tan∠BAE= ,sin∠BAE= ,cos∠BAE= 。

若以D、E、P为顶点的三角形与△ABE相似,则△DEP必为直角三角形。

①DE为斜边时,P1在x轴上,此时P1与O重合。

由D(﹣1,0)、E(0,3),得OD=1、OE=3,

即tan∠DEO= =tan∠BAE,

即∠DEO=∠BAE,满足△DEO∽△BAE的条件。

因此 O点是符合条件的P1点,坐标为(0,0)。

②DE为短直角边时,P2在x轴上。

若以D、E、P为顶点的三角形与△ABE相似∠DEP2=∠AEB=90°sin∠DP2E=sin∠BAE= 。

而DE= ,则DP2=DE÷sin∠DP2E= ÷ =10,OP2=DP2﹣OD=9。

即P2(9,0)。

③DE为长直角边时,点P3在y轴上。

若以D、E、P为顶点的三角形与△ABE相似,

则∠EDP3=∠AEB=90°cos∠DEP3=cos∠BAE= 。

则EP3=DE÷cos∠DEP3= ÷ ,OP3=EP3﹣OE= 。即P3(0,﹣ )。

综上所述,得:P1(0,0),P2(9,0),P3(0,﹣ )。

(4)过E作EF∥x轴交AB于F,当E点运动在EF之间时,△AOE与△ABE重叠部分是个五边形;当E点运动到F点右侧时,△AOE与△ABE重叠部分是个三角形.按上述两种情况按图形之间的和差关系进行求解。

5. (2012湖北天门、仙桃、潜江、江汉油田12分)如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线解析式及点D坐标;

(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;

(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.

上一页  [1] [2] [3] [4] [5] [6] [7]  下一页


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:中考复习检测数学试题(有答案)