当前位置:考满分吧中小学教学高中学习网高三学习辅导高三数学复习高三数学教案理科高三数学教案:排列组合总复习» 正文

理科高三数学教案:排列组合总复习

[10-20 00:47:15]   来源:http://www.kmf8.com  高三数学教案   阅读:8181
概要: (2)用间接法.共C410-69=141种.总结提高解有条件限制的排列与组合问题的思路:(1)正确选择原理,确定分类或分步计数;(2)特殊元素、特殊位置优先考虑;(3)再考虑其余元素或其余位置.12.3 二项式定理典例精析题型一二项展开式的通项公式及应用【例1】 已知 的展开式中,前三项系数的绝对值依次成等差数列.(1)求证:展开式中没有常数项;(2)求展开式中所有的有理项.【解析】由题意得2C1n• =1+C2n•( )2,即n2-9n+8=0,所以n=8,n=1(舍去).所以Tr+1= •( ) •=(- )r• • •=(-1)r• • (0≤r≤8,r∈Z).(1)若Tr+1是常数项,则16-3r4=0,即16-3r=0,因为r∈Z,这不可能,所以展开式中没有常数项.(2)若Tr+1是有理项,当且仅当16-3r4为整数,又0≤r≤8,r∈Z,所以 r=0,4,8,即展开式中有三项有理项,分别是T1=x4,T5=358
理科高三数学教案:排列组合总复习,标签:高三数学教案模板,http://www.kmf8.com

(2)用间接法.共C410-69=141种.

总结提高

解有条件限制的排列与组合问题的思路:

(1)正确选择原理,确定分类或分步计数;

(2)特殊元素、特殊位置优先考虑;

(3)再考虑其余元素或其余位置.

12.3 二项式定理

典例精析

题型一 二项展开式的通项公式及应用

【例1】 已知 的展开式中,前三项系数的绝对值依次成等差数列.

(1)求证:展开式中没有常数项;

(2)求展开式中所有的有理项.

【解析】由题意得2C1n• =1+C2n•( )2,

即n2-9n+8=0,所以n=8,n=1(舍去).

所以Tr+1= •( ) •

=(- )r• • •

=(-1)r• • (0≤r≤8,r∈Z).

(1)若Tr+1是常数项,则16-3r4=0,即16-3r=0,

因为r∈Z,这不可能,所以展开式中没有常数项.

(2)若Tr+1是有理项,当且仅当16-3r4为整数,

又0≤r≤8,r∈Z,所以 r=0,4,8,

即展开式中有三项有理项,分别是T1=x4,T5=358 x,T9=1256 x-2.

【点拨】(1)把握住二项展开式的通项公式,是掌握二项式定理的关键.除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系、性质;

(2)应用通项公式求二项展开式的特定项,如求某一项,含x某次幂的项,常数项,有理项,系数最大的项等,一般是应用通项公式根据题意列方程,在求得n或r后,再求所需的项(要注意n和r的数值范围及大小关系);

(3) 注意区分展开式“第r+1项的二项式系数”与“第r+1项的系数”.

【变式训练1】若(xx+ )n的展开式的前3项系数和为129,则这个展开式中是否含有常数项,一次项?如果有,求出该项,如果没有,请说明理由.

【解析】由题知C0n+C1n•2+C2n•22=129,

所以n=8,所以通项为Tr+1=Cr8(xx)8-r = ,

故r=6时,T7=26C28x=1 792x,

所以不存在常数项,而存在一次项,为1 792x.

题型二 运用赋值法求值

【例2】(1)已知(1+x)+(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+anxn,且a1+a2+…+an-1=29-n,则n=  ;

(2)已知(1-x)n=a0+a1x+a2x2+…+anxn,若5a1+2a2=0,则a0-a1+a2-a3+…+(-1)nan=  .

【解析】(1)易知an=1,令x=0得a0=n,所以a0+a1+…+an=30.

又令x=1,有2+22+…+2n=a0+a1+…+an=30,

即2n+1-2=30,所以n=4.

(2)由二项式定理得,

a1=-C1n=-n,a2=C2n=n(n-1)2,

代入已知得-5n+n(n-1)=0,所以n=6,

令x=-1得(1+1)6=a0-a1+a2-a3+a4-a5+a6,

即a0-a1+a2-a3+a4-a5+a6=64.

【点拨】运用赋值法求值时应充分抓住代数式的结构特征,通过一些特殊值代入构造相应的结构.

【变式训练2】设(3x-1)8=a0+a1x+a2x2+…+a7x7+a8x8.求a0+a2+a4+a6+a8的值.

【解析】令f(x)=(3x-1)8,

因为f(1)=a0+a1+a2+…+a8=28,

f(-1)=a0-a1+a2-a3+…-a7+a8=48,

所以a0+a2+a4+a6+a8=f(1)+f(-1)2=27×(1+28).

题型三 二项式定理的综合应用

【例3】求证:4×6n+5 n+1-9能被20整除.

【解析】4×6n+5n+1-9=4(6n-1)+5(5n-1)=4[(5+1)n-1]+5[(4+1)n-1]=20[(5n-1+C1n5n-2+…+Cn-1n)+(4n-1+C1n4n-2+…+Cn-1n)],是20的倍数,所以4×6n+5n+1-9能被20整除.

【点拨】用二项式定理证明整除问题时,首先需注意(a+b)n中,a,b中有一个是除数的倍数;其次展开式有什么规律,余项是什么,必须清楚.

【变式训练3】求0.9986的近似值,使误差小于0.001.

【解析】0.9986=(1-0.002)6=1+6×(-0.002)1+15×(-0.002)2+…+(-0.002)6.

因为T3=C26(-0.002)2=15×(-0.002)2=0.000 06<0.001,

且第3项以后的绝对值都小于0.001,

所以从第3项起,以后的项都可以忽略不计.

所以0.9986=(1-0.002)6≈1+6×(-0.002)=1-0.012=0.988.

总结提高

1.利用通项公式可求展开式中某些特定项(如常数项、有理项、二项式系数最大项等),解决这些问题通常采用待定系数法,运用通项公式写出待定式,再根据待定项的要求写出n、r满足的条件,求出n和r,再确定所需的项;

2.赋值法是解决二项展开式的系数和、差问题的一个重要手段;

3.利用二项式定理解决整除问题时,关键是进行合理的变形,使得二项展开式的每一项都成为除数的倍数.对于余数问题,要注意余数的取值范围.

12.4 随机事件的概率与概率的基本性质

典例精析

题型一 频率与概率

【例1】某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示.

抽取球数n 50 100 200 500 1 000 2 000

优等品数m 45 92 194 470 954 1 902

优等品频率

(1)计算表中乒乓球优等品的频率;

(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)

【解析】(1)依据公式 ,计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,

0.940,0.954,0.951.

(2)由(1)知,抽取的球数n不同,计算得到的频率值不同,但随着抽取的球数的增多,却都在常数0.950的附近摆动,所以质量检查为优等品的概率为0.950.

【点拨】从表中所给的数据可以看出,当所抽乒乓球较少时,优等品的频率波动很大,但当抽取的球数很大时,频率基本稳定在0.95,在其附近摆动,利用概率的统计定义,可估计该批乒乓球的优等率.

【变式训练1】某篮球运动员在最近几场比赛中罚球的结果如下.

投篮次数n 8 10 12 9 10 16

进球次数m 6 8 9 7 7 12

进球频率

(1)计算表中进球的频率;

(2)这位运动员投篮一次,进球的概率是多少?

【解析】(1)由公式计算出每场比赛该运动员罚球进球的频率依次为:

(2)由(1)知,每场比赛进球的频率虽然不同,但频率总在 附近摆动,可知该运动员进球的概率为 .

题型二 随机事件间的关系

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  下一页


Tag:高三数学教案高三数学教案模板高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学教案
上一篇:理科高三数学教案:算法初步总复习