当前位置:考满分吧中小学教学高中学习网高三学习辅导高三数学复习高三数学教案理科高三数学教案:排列组合总复习» 正文

理科高三数学教案:排列组合总复习

[10-20 00:47:15]   来源:http://www.kmf8.com  高三数学教案   阅读:8181
概要: 【变式训练1】点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为.【解析】如图可设 =1,则根据几何概率可知其整体事件是其周长3,则其概率是23.题型二面积问题【例2】 两个CB对讲机(CB即CitizenBand民用波段的英文缩写)持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:00时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:00时他们能够通过对讲机交谈的概率有多大?【解析】设x和y分别代表莉莉和霍伊距基地的距离,于是0≤x≤30,0≤y≤40.他们所有可能的距离的数据构成有序点对(x,y),这里x,y都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置, 他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如下图),因此构成该事件的点由满足不等式x2+y2≤25的
理科高三数学教案:排列组合总复习,标签:高三数学教案模板,http://www.kmf8.com

【变式训练1】点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为   .

【解析】如图

可设 =1,则根据几何概率可知其整体事件是其周长3,则其概率是23.

题型二 面积问题

【例2】 两个CB对讲机(CB即CitizenBand民用波段的英文缩写)持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:00时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:00时他们能够通过对讲机交谈的概率有多大?

【解析】设x和y分别代表莉莉和霍伊距基地的距离,于是0≤x≤30,0≤y≤40.

他们所有可能的距离的数据构成有序点对(x,y),这里x,y都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置, 他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如下图),因此构成该事件的点由满足不等式x2+y2≤25的数对组成,

此不等式等价于x2+y2≤625,右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1 200平方公里,而事件的面积为(14)×π×(25)2=625π4,

于是有P=625×π41 200=625π4 800≈0.41.

【点拨】解决此类问题,应先根据题意确定该实验为几何概型,然后求出事件A和基本事件的几何度量,借助几何概型的概率公式求出.

【变式训练2】如图,以正方形ABCD的边长为直径作半圆,重叠部分为花瓣.现在向该正方形区域内随机地投掷一飞镖,求飞镖落在花瓣内的概率.

【解析】飞镖落在正方形区域内的机会是均等的,符合几何概型条件.记飞镖落在花瓣内为事件A,设正方形边长为2r,则

P( A)=S花瓣SABCD=12πr2×4-(2r)2(2r)2=π-22.

所以,飞镖落在花瓣内的概率为π-22.

题型三 体积问题

【例3】 在线段[0,1]上任意投三个点,设O至三点的三线段长为x、y、z,研究方法表明:x,y,z能构成三角形只要点(x,y,z) 落在棱长为1的正方体T的内部由△ADC,△ADB,△BDC,△AOC,△AOB,△BOC所围成的区域G中(如图),则x,y,z能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大?

【解析】V(T)=1,V(G)=13-3×13×12×13=12,

所以P=V(G)V(T)=12.

由此得,能与不能构成三角形两事件的概率一样大.

【点拨】因为任意投的三点x,y,z是随机的,所以使得能构成三角形只与能构成三角形的区域及基本事件的区域有关.

【变式训练3】已知正方体ABCD—A1B1C1D1内有一个内切球O,则在正方体ABCD—A1B1C1D1内任取点M,点M在球O内的概率是(  )

A.π4 B.π8 C.π6 D.π12

【解析】设正方体的棱长为a,则点M在球O内的概率P=V球V正方体=43π(a2)3a3=π6,选C.

总结提高

1.几何概型是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.其特点是在一个区域内均匀分布,概率大小与随机事件所在区域的形状和位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,其测度为0,则它出现的概率为0,但它不是不可能事件. 如果随机事件所在区域是全部区域扣除一个单点, 其测度为1,则它出现的概率为1,但它不是必然事件.

2.若试验的全部结果是一个包含无限个点的区域(长度,面积,体积),一个基本事件是区域中的一个点.此时用点数度量事件A包含的基本事件的多少就毫无意义.“等可能性”可以理解成“对任意两个区域,当它们的测度(长度,面积,体积,…)相等时,事件A对应点落在这两区域上的概率相等,而与形状和位置都无关”.

3.几何概型并不限于向平面(或直线、空间)投点的试验,如果一个随机试验有无限多个等可能的基本结果,每个基本结果可以用平面(或直线、空间)中的一点来表示,而所有基本结果对应于一个区域Ω,这时,与试验有关的问题即可利用几何概型来解决.

12.7 条件概率与事件的独立性

典例精析

题型一 条件概率的求法

【例1】一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:

(1)任意按最后一位数字,不超过2次就按对的概率;

(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.

【解析】设第i次按对密码为 事件Ai(i=1,2),则A=A1∪( A2)表示不超过2次就按对密码.

(1)因为事件A1与事件 A2互斥,由概率的加法公式得P(A)=P(A1)+P( A2)=110+9×110×9=15.

(2)用B表示最后一位是偶数的事件,则

P(A|B)=P(A1|B)+P( A2|B)=15+4×15×4=25.

【点拨】此类问题解题时应注意着重分析事件间的关系,辨析所求概率是哪一事件的概率,再运用相应的公式求解.

【变式训练1】设某种动物从出生算起活到20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一只20岁的这种动物,问它能活到25岁以上的概率是   .

【解析】设此种动物活到20岁为事件A,活到25岁为事件B,所求概率为P(B|A), 由于B⊆A,则P(AB)=P(B),所以P(B|A)=P(AB)P(A)=P(B)P(A)=0.40.8=12.

题型二 相互独立事件的概率

【例2】三人独立破译同一份密码,已知三人各自破译出密码的概率分别为15,14,13,且他们是否破译出密码互不影响.

(1)求恰有二人破译出密码的概率;

(2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.

【解析】(1)记三人各自破译出密 码分别为事件A,B,C,依题意知A,B,C相互独立,记事件D:恰有二人破译密码,

则P(D)=P(AB )+P(A C)+P( BC)

=15×14×(1-13)+15×(1-14)×13+(1-15)×14×13=960=320.

(2)记事件E:密码被破译, :密码未被破译,

则P( )=P( )=(1-15)×(1-14)×(1-13)=2460=25,

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  下一页


Tag:高三数学教案高三数学教案模板高中学习网 - 高三学习辅导 - 高三数学复习 - 高三数学教案
上一篇:理科高三数学教案:算法初步总复习