当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2017年部分地区中考数学几何综合型问题试题(附答案)» 正文

2017年部分地区中考数学几何综合型问题试题(附答案)

[05-18 21:30:48]   来源:http://www.kmf8.com  初三数学试卷   阅读:8132
概要: 【答案】(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)证明: 如图2,延长AD至F,使DF=BE.连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=DF+GD=BE+GD.(3)如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCD 为正方形.&there
2017年部分地区中考数学几何综合型问题试题(附答案),标签:初三数学试卷分析,http://www.kmf8.com

【答案】(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,

∴△CBE≌△CDF.∴CE=CF.

(2)证明: 如图2,延长AD至F,使DF=BE.连接CF.

由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.

∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,

又∠GCE=45°,∴∠GCF=∠GCE=45°.

∵CE=CF,∠GCE=∠GCF,GC=GC,

∴△ECG≌△FCG.∴GE=GF,∴GE=DF+GD=BE+GD.

(3)如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∠CGA=90°,AB=BC,

∴四边形ABCD 为正方形.∴AG=BC.已知∠DCE=45°,

根据(1)(2)可知,ED=BE+DG.

所以10=4+DG,即DG=6.设AB=x,则AE=x-4,AD=x-6,在Rt△AED中,∵ ,即 .解这个方程,得:x=12,或x=-2(舍去).∴AB=12.所以梯形ABCD的面积为S=

【点评】本题是一道几何综合题,内容涉及三角形的全等、图形的旋转以及勾股定理的应用,重点考查学生的数学学习能力.本题的设计由浅入深,循序渐进,考虑到学生的个体差异.

专项八 几何综合型问题(42)

23.(湖南株洲市8,23题)(本题满分8分)如图,在△ABC中,∠C=90°,BC=5米,AC=12米。M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒。运动时间为t秒。

(1)、当t 为何值时,∠AMN=∠ANM ?

(2)、当t 为何 值时,△AMN的面积最大?并求出这个最大值。

【解析】(1)当两角相等可知,AM=AN,列出方程求出t的值,(2)面积的最值问题是利用二次函数的最值问题,根据题意写出三角形的面积与t的函数关系式,根据自变量的取值及二次函数的性质求出最值.

【解】(1)、依题意有 …… 1分

…… 2分

解得:t=4 秒,即为所求。 …… 3分

(2)、

解法一:如图作 …… 4分

…… 6分

…… 8分21世纪教育网

解法二:

…… 4分

…… 6分

…… 8分

【点评】求最大面积、最大利润等问题,一定要考虑到函数关系式的应用,特别是二次函数的应用。

19. (2012四川省南充市,19,8分) 矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.

(1)求证:△AEF∽△DCE;

(2)求tan∠ECF的值.

解析:(1)由四边形ABCD是矩形,EF⊥EC,易得∠A=∠D=90°,∠AFE=∠DEC,由有两组角对应相等的两个三角形相似,即可判定△AEF∽△DCE;

(2)由△AEF∽△DCE,根据相似三角形的对应边成比例,可得 ,又由矩形ABCD中,AB=2AD,E为AD的中点,tan∠ECF= ,即可求得答案.

答案:解:(1)在矩形ABCD中,∠A=∠D=900.

∵EF⊥EC,∴∠FEC =900.∴∠FEA+∠CED=900.

∵∠FEA+∠EAF=900.∴∠EAF=∠CED.

∴⊿AEF∽⊿DCE.

(2)∵AB=2AD,E为AD的中点,

∴ .

∵⊿AEF∽⊿DCE. ∴ .

在 中, .

点评:此题考查了相似三角形的判定与性质、矩形的性质以及锐角三角函数的定义.此题难度适中,在根据题意无法直接求得三角形中边的长短时,可考虑利用三角形的相似关系,通过对应边的比例相等的特点,结合题中的线段间倍数关系,推得某角的三角函数值。解题时还要注意数形结合思想的应用。

24. (2012浙江省嘉兴市,24,14分)在平面直角坐标系xOy中,点P是抛物线y= 上的动点(点P在笫一象限内).连结OP,过点O作OP的垂线交抛物线于另一点Q.连结PQ,交y轴于点M.作PA⊥x轴于点A,QB⊥x轴于点B.设点P的横坐标为m.

(1)如图①,当m= 时,

①求线段OP的长和tan∠POM的值;

②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;

(2)如图②,连结AM、BM,分别与OP、OQ相交于点D、E。

①用含m的代数式表示点Q的坐标;

②求证:四边形ODME是矩形。

【解析】(1)①欲求线段OP的长,需要先求得点P的坐标,把P点的横坐标m代入 ,可得;由PA⊥x轴, 得PA∥MO, ∴tan∠POM=tan∠OPA= .

②欲求点C的坐标, 需要先求得点Q的坐标.设Q(n, ),由题意可得 ,进而得

Q( , ),∴OQ= .以OQ为腰, 分别讨论当OQ=OC和OQ=CQ时,点C的坐标即可.

(2)①由P点的横坐标为m,利用相似三角形的性质可推得点Q( , ).②先利用待定系数法求得直线PQ的函数解析式,进而得点M的坐标.利用相似三角形的判定证得△QBO∽△MOA,进而证得Q0∥ MA. 同理可证:EM∥ OD. 又∵∠EOD=90° .所以四边形ODME是矩形。

【答案】 (1)①把m= 代入 , y=2.∴P( ,2), ∴OP= .

∵PA⊥x轴,∴PA∥MO.

∴tan∠POM=tan∠OPA= = .

②设Q(n, ),∵tan∠QOB=tan∠PON, ∴ .

∴ ,∴Q( , ),∴OQ= .

当OQ=OC时,则 , ;

当OQ=CQ时,则 .

综上所述,所求点C的坐标为: , , .

(2)①∵P(m , ),设Q(n, ). ∵△APO∽△BOQ,∴ .∴ ,得

∴Q( , ).

②设直线PO的廨析式为:y=kx+b,把P(m , )、Q( , )代入得:

解得b=1, ∴M(0,1)

∵ ,∠QBO=∠MOA=90°, ,∴△QBO∽△MOA.

∴∠MAO=∠QOB, ∴QO∥ MA.

同理可证:EM∥ OD.

又∵∠EOD=90°, ∴四边形ODME是矩形。

【点评】本题是一道几何代数综合题,主要考查了一次函数,二次函数, 勾股定理, 相似三角形的性质与判定,矩形的判定及方程思想,分类讨论,特殊到一般的数学思想等的综合应用.

解题的关键:灵活应用所学,求出关键点P、Q、M点的坐标.

(1)中,①运用了勾股定理,平行线的性质,锐角三角函数的意义; ②运用了方程思想,分类讨论的思想. (2)中相似三角形的性质与判定,,矩形的判定.

上一页  [1] [2] [3] [4] [5] [6] [7] [8]  下一页


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:全国各地中考数学实数试题归总(含答案)