当前位置:考满分吧中小学教学初中学习网初三学习辅导初三数学辅导资料初三数学试卷2017年浙江中考数学押轴题归总解析» 正文

2017年浙江中考数学押轴题归总解析

[05-18 21:30:48]   来源:http://www.kmf8.com  初三数学试卷   阅读:8547
概要: 【答案】解:(1)当m=3时,y=-x2+6x。令y=0得-x2+6x=0,解得,x1=0,x2=6。∴A(6,0)。当x=1时,y=5。∴B(1,5)。∵抛物线y=-x2+6x的对称轴为直线x=3,且B,C关于对称轴对称,∴BC=4。(2)过点C作CH⊥x轴于点H(如图1)由已知得,∠ACP=∠BCH=90°,∴∠ACH=∠PCB。又∵∠AHC=∠PBC=90°,∴△AGH∽△PCB。∴ 。∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,且B,C关于对称轴对称,∴BC=2(m-1)。∵B(1,2m-1),P(1,m),∴BP=m-1。又∵A(2m,0),C(2m-1,2m-1),∴H(2m-1,0)。∴AH=1,CH=2m-1,∴ ,解得m= 。(3)存在。∵B,C不重合,∴m≠1。(I)当m>1
2017年浙江中考数学押轴题归总解析,标签:初三数学试卷分析,http://www.kmf8.com

【答案】解:(1)当m=3时,y=-x2+6x。

令y=0得-x2+6x=0,解得,x1=0,x2=6。∴A(6,0)。

当x=1时,y=5。∴B(1,5)。

∵抛物线y=-x2+6x的对称轴为直线x=3,且B,C关于对称轴对称,∴BC=4。

(2)过点C作CH⊥x轴于点H(如图1)

由已知得,∠ACP=∠BCH=90°,∴∠ACH=∠PCB。

又∵∠AHC=∠PBC=90°,∴△AGH∽△PCB。

∴ 。

∵抛物线y=-x2+2mx的对称轴为直线x=m,其中m>1,且B,C关于对称轴对称,

∴BC=2(m-1)。

∵B(1,2m-1),P(1,m),∴BP=m-1。

又∵A(2m,0),C(2m-1,2m-1),∴H(2m-1,0)。

∴AH=1,CH=2m-1,

∴ ,解得m= 。

(3)存在。∵B,C不重合,∴m≠1。

(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,

(i)若点E在x轴上(如图1),

∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP。

∴△BPC≌△MEP,∴BC=PM,即2(m-1)=m,解得m=2。

此时点E的坐标是(2,0)。

(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,

易证△BPC≌△NPE,

∴BP=NP=OM=1,即m-1=1,解得,m=2。

此时点E的坐标是(0,4)。

(II)当0

(i)若点E在x轴上(如图3),

易证△BPC≌△MEP,

∴BC=PM,即2(1-m)=m,解得,m= 。

此时点E的坐标是( ,0)。

(ii)若点E在y轴上(如图4),

过点P作PN⊥y轴于点N,易证△BPC≌△NPE,

∴BP=NP=OM=1,即1-m=1,∴m=0(舍去)。

综上所述,当m=2时,点E的坐标是(0,2)或(0,4),

当m= 时,点E的坐标是( ,0)。

【考点】二次函数综合题,曲线上点的坐标与方程的关系,二次函数的性质,相似三角形的判定和性质,全等三角形的判定和性质。

【分析】(1)把m=3,代入抛物线的解析式,令y=0解方程,得到的非0解即为和x轴交点的横坐标,再求出抛物线的对称轴方程,从而求出BC的长。

(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°,利用已知条件证明

△AGH∽△PCB,根据相似的性质得到: ,再用含有m的代数式表示出BC,CH,BP,代入比例式即可求出m的值。

(3)存在。本题要分当m>1时,BC=2(m-1),PM=m,BP=m-1和当0

19. (2012浙江义乌10分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.

(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;

(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;

(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.

【答案】解:(1)∵由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,

∴∠CC1B=∠C1CB=45°。

∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°。

(2)∵由旋转的性质可得:△ABC≌△A1BC1,

∴BA=BA1,BC=BC1,∠ABC=∠A1BC1。

∴ ,∠ABC+∠ABC1=∠A1BC1+∠ABC1。∴∠ABA1=∠CBC1。

∴△ABA1∽△CBC1。∴ 。

∵S△ABA1=4,∴S△CBC1= 。

(3)过点B作BD⊥AC,D为垂足,

∵△ABC为锐角三角形,∴点D在线段AC上。

在Rt△BCD中,BD=BC×sin45°= 。

①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小。

最小值为:EP1=BP1﹣BE=BD﹣BE= ﹣2。

②如图2,当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大。

最大值为:EP1=BC+BE=5+2=7。

【考点】旋转的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质。

【分析】(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数。

(2)由旋转的性质可得:△ABC≌△A1BC1,易证得△ABA1∽△CBC1,利用相似三角形的面积比等于相似比的平方,即可求得△CBC1的面积。

(3)由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值。

20. (2012浙江义乌12分)如图1,已知直线y=kx与抛物线 交于点A(3,6).

(1)求直线y=kx的解析式和线段OA的长度;

(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;

(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?

【答案】解:(1)把点A(3,6)代入y=kx 得;6=3k,即k=2。

∴y=2x。

∴ 。

(2)线段QM与线段QN的长度之比是一个定值,理由如下:

如图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.

①当QH与QM重合时,显然QG与QN重合,

此时 。

②当QH与QM不重合时,

∵QN⊥QM,QG⊥QH不妨设点H,G分别在x、y轴的正半轴上,

∴∠MQH=∠GQN。

又∵∠QHM=∠QGN=90°,∴△QHM∽△QGN。∴ 。

当点P、Q在抛物线和直线上不同位置时,同理可得 。

∴线段QM与线段QN的长度之比是一个定值。

(3)如图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R。

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]  下一页


Tag:初三数学试卷初三数学试卷分析初中学习网 - 初三学习辅导 - 初三数学辅导资料 - 初三数学试卷
上一篇:九年级数学上册培优训练试题