(1)当k=﹣2时,求反比例函数的解析式;
(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;
(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
【答案】解:(1)当k=﹣2时,A(1,﹣2),
∵A在反比例函数图象上,∴设反比例函数的解析式为: 。
将A(1,﹣2)代入得: ,解得:m=﹣2。
∴反比例函数的解析式为: 。
(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0。
∵二次函数y=k(x2+x﹣1)= ,∴它的对称轴为:直线x=﹣ 。
要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣ 时,才能使得y随着x的增大而增大。
∴综上所述,k<0且x<﹣ 。
(3)由(2)可得:Q 。
∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)
∴原点O平分AB,∴OQ=OA=OB。
作AD⊥OC,QC⊥OC,垂足分别为点C,D。
∴ 。
∵ ,
∴ ,解得:k=± 。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,反比例函数和二次函数的性质。
【分析】(1)当k=﹣2时,即可求得点A的坐标,然后设反比例函数的解析式为: ,利用待定系数法即可求得答案;
(2)由反比例函数和二次函数都是y随着x的增大而增大,可得k<0。
又由二次函数y=k(x2+x﹣1)的对称轴为x=﹣ ,可得x<﹣ 时,才能使得y随着x的增大而增大。
(3)由△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q ,A(1,k),即可得 ,从而求得答案。
2.(2012浙江杭州12分)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3 ,MN=2 .
(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上( 是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.
【答案】解:(1)∵AE切⊙O于点E,∴AE⊥CE。
又∵OB⊥AT,∴∠AEC=∠CBO=90°,
又∵∠BCO=∠ACE,∴△AEC∽△OBC。
又∵∠A=30°,∴∠COB=∠A=30°。
(2)∵AE=3 ,∠A=30°,
∴在Rt△AEC中,tanA=tan30°= ,即EC=AEtan30°=3。
∵OB⊥MN,∴B为MN的中点。
又∵MN=2 ,∴MB= MN= 。
连接OM,在△MOB中,OM=R,MB= ,
∴ 。
在△COB中,∠BOC=30°,
∵cos∠BOC=cos30°= ,∴BO= OC。
∴ 。
又∵OC+EC=OM=R,
∴ 。
整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5。
∴R=5。
(3)在EF同一侧,△COB经过平移、旋转和相似变换后,这样的三角形有6个,
如图,每小图2个,顶点在圆上的三角形,如图所示:
延长EO交圆O于点D,连接DF,如图所示,
△FDE即为所求。
∵EF=5,直径ED=10,可得出∠FDE=30°,
∴FD=5 。
则C△EFD=5+10+5 =15+5 ,
由(2)可得C△COB=3+ ,
∴C△EFD:C△COB=(15+5 ):(3+ )=5:1。
【考点】切线的性质,含30度角的直角三角形的性质,锐角三角函数定义,勾股定理,垂径定理,平移、旋转的性质,相似三角形的判定和性质。
【分析】(1)由AE与圆O相切,根据切线的性质得到AE⊥CE,又OB⊥AT,可得出两直角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似可得出△AEC∽△OBC,根据相似三角形的对应角相等可得出所求的角与∠A相等,由∠A的度数即可求出所求角的度数。
(2)在Rt△AEC中,由AE及tanA的值,利用锐角三角函数定义求出CE的长,再由OB⊥MN,根据垂径定理得到B为MN的中点,根据MN的长求出MB的长,在Rt△OBM中,由半径OM=R,及MB的长,利用勾股定理表示出OB的长,在Rt△OBC中,由表示出OB及cos30°的值,利用锐角三角函数定义表示出OC,用OE﹣OC=EC列出关于R的方程,求出方程的解得到半径R的值。
(3)把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有6个。
顶点在圆上的三角形,延长EO与圆交于点D,连接DF,△FDE即为所求。
根据ED为直径,利用直径所对的圆周角为直角,得到△FDE为直角三角形,由∠FDE为30°,利用锐角三角函数定义求出DF的长,表示出△EFD的周长,再由(2)求出的△OBC的三边表示出△BOC的周长,即可求出两三角形的周长之比。
3. (2012浙江湖州10分)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.
(1)求乙、丙两种树每棵各多少元?
(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?
(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?
【答案】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,
∴乙种树每棵200元,丙种树每棵 ×200=300(元)。
(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵.
根据题意:200•2x+200x+300(1000-3x)=210000,
解得x=30。
∴2x=600,1000-3x=100,
答:能购买甲种树600棵,乙种树300棵,丙种树100棵。
(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,
根据题意得:200(1000-y)+300y≤210000+10120,
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 下一页
- 2017年浙江中考数学押轴题归总解析
- › 2017高考政治备考攻略
- › 2017高三政治复习备考的主要策略
- › 2017年高考政治备考:重视“两件大事”坚持“三个为主”
- › 2017高考政治备考:着重了解七大考点
- › 2017年高考政治主观题得分技巧
- › 2017高考地理备考指导:解题技巧
- › 2017年高考备考:高考地理复习提纲
- › 2017年高考地理二轮复习:把握各要素之间的联系
- › 2017年高考最有可能考的50道地理试题
- › 2017年高考地理命题趋势预测及指导
- › 2017年高考地理答题技巧
- › 2017年高考地理复习:河流专题
- 在百度中搜索相关文章:2017年浙江中考数学押轴题归总解析
- 在谷歌中搜索相关文章:2017年浙江中考数学押轴题归总解析
- 在soso中搜索相关文章:2017年浙江中考数学押轴题归总解析
- 在搜狗中搜索相关文章:2017年浙江中考数学押轴题归总解析